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Axisymmetric inertial oscillations of a fluid in a 
rotating spherical container 

By KEITH D. ALDRIDGET AND ALAR TOOMRE 
Massachusetts Institute of Technology, Cambridge, Massachusetts 

(Received 22 August 1968) 

This paper describes an experiment performed with a fluid-filled sphere whose 
rotation speed about a fixed axis was forcibly varied in a slight but sinusoidal 
manner about a non-zero mean value. The object of this experiment was both to 
excite axisymmetric inertial eigen-oscillations within the relatively low viscosity 
fluid through the mild pumping action of the oscillatory Ekman boundary layer 
near the wall, and to measure and compare with theory some of the properties of 
such modes. 

Seven distinct fluid resonances were detected via pressure measurements 
made along the axis for various ratios of the excitation to the mean rotation 
frequency. For the three most pronounced of those modes, the observed frequency 
ratios agree within 4 of 1 % with the corresponding ratios predicted from linear, 
small viscosity theory. The response amplitudes at  the various resonances and 
the rates of decay upon switching off the excitation also compare favourably 
with theory, although the observed amplitudes are systematically lower and the 
decays more rapid by a few per cent to several tens of per cent. 

The theory referred to above is largely that of Greenspan (1964, 1968). It is in 
part rederived here from energy considerations. 

1. Introduction 
The term ‘inertial oscillations’ has come to denote those oscillatory motions 

of a rotating fluid that owe their existence neither to free surfaces, nor to com- 
pressibility, nor to any density stratification. The present paper reports the 
excitation of some discrete eigenmodes of this kind within a spherical cavity. In  
a sense this is but an extension to a different geometry of the experiments of 
Fultz (1959), which themselves belong to a line of investigations dating back at 
least to Bjerknes & Solberg (1929) and to Kelvin (1880). Fultz excited similar 
inertial modes within a right circular cylinder by means of a small disk immersed 
in the fluid and oscillated up and down along the cylinder (and rotation) axis at 
various constant frequencies. Besides its geometry, however, our study differs 
also in its special emphasis on ascertaining the effects of a small but finite vis- 
cosity. In  addition, our method of exciting these fluid oscillations should itself 
be of some interest. 
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That method was suggested by the following analogy: Imagine a small- 
amplitude gravity wave in a relatively shallow, non-rotating basin of fluid. In  the 
presence of a slight viscosity, the amplitude of this wave will decay with time, 
if for no other reason than the energy dissipation in the boundary layer near the 
rigid bottom. Note, however, that that decay will not require viscous diffusion 
upwards through the full depth of the fluid. Rather, the slight vertical secondary 
flow from the spatially and time-dependent bottom boundary layer will phase 
itself so as to drain wave energy from the bulk of the fluid through the action 
of pressure forces alone. 

The above implies that if this phase relation to the rest of the oscillation were 
modified sufficiently, one could actually excite or amplify waves in that basin. 
For instance, suppose the bottom were made of a (one-dimensionally) flexible 
material that could be forced to slide back and forth in its own plane with a speed 
harmonically dependent both on time and on the horizontal co-ordinate in the 
direction of movement. Then an appreciable standing wave would indeed be 
built up, provided the excitation frequency were chosen to approximate the 
inviscid natural frequency of a wave of the same length as the prescribed sliding. 
Even precisely at resonance, however, such a fluid response would not blow up 
with vanishing viscosity; on the contrary, that steady-state amplitude would be 
virtually independent of the viscosity. 

In  the experiment we are about to describe, it was the externally driven 
oscillation of the sphere about its axis of mean rotation that corresponded to the 
sliding bottom. Because its tangential speed and also the properties of the bound- 
ary layer itself depended on the latitude, it was unnecessary to make this con- 
tainer flexible. In  fact, unlike the spatially sinusoidal forcing described above, 
the pumping through the time-dependent Ekman boundary layers here proved 
significantly non-orthogonal to a number of different modes of fluid oscillation. 
It was therefore possible to ‘tune in’ to any particular mode simply by choosing 
an appropriate ratio of the frequency of reciprocation and the mean speed of 
rotation. 

2. Experimental arrangements 
Our apparatus consisted primarily of a polished, transparent sphere of internal 

radius a = 10 cm, with discrepancies between its various diameters not exceeding 
0.2’7& This sphere, completely filled with water as the usual working fluid, was 
fastened to a shaft that was in turn supported vertically by bearings mounted on 
a turntable. By means of a crank and torsion-bar arrangement, the shaft and 
sphere together could be made to reciprocate relative to the turntable with an 
arbitrary half-amplitude E and a frequency w. The turntable itself was driven 
coaxially with the shaft at  a steady rate a, thereby imparting to the sphere the 
instantaneous angular speed 

sz,(t) sz+€wcoswt. (1) 

For technical reasons, the frequency of oscillation was always kept constant at  
w z 6.2 radlsec. Desired changes in the ratio w/Q between successive observations 
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were brought about by altering the turntable speed via a continuously variable 
transmission. 

Various resonant oscillations of the fluid in the cavity were made visible by 
introducing dye and also with suspended aluminium flakes. They were in addition 
measured crudely with a manometer tube extending to the centre of the sphere 
and filled with alcohol to raise the meniscus above the top of the sphere for easier 
viewing. All the amplitude and phase measurements reported below, however, 
refer to disturbance pressure differences between the tip of a non-rotating, 2 mm 
0.d. hollow tube immersed along the axis usually to the centre of the sphere, and 
the free surface of the fluid at a 1-2 ern diameter hole drilled into the ‘north pole ’ 
of the container. 

The said probe was connected through stiff tubing to an inductive differential 
pressure transducer, the other port of which remained open to the atmosphere. 
The electrical output of this transducer and simultaneous data concerning the 
phase of the mechanical oscillation were transmitted to a multi-channel chart 
recorder. The dynamical response of the probe-transducer-recorder combination 
was frequently calibrated with respect both to amplitude and phase by immersing 
the probe tip in a beaker of water that was shaken vertically at  1 CIS with appro- 
priate optically measured amplitudes of the order of 1 mm. The mean rotation 
speed a, and even the oscillation half-amplitude E of the sphere while the turn- 
table was in motion, was determined with an electronic stopwatch. Numerous 
other probe calibrations, averagings of data, and refinements of apparatus were 
undertaken to ensure that any errors in the reported pressure coefficients 
remained of the order of 1 or 2% of the maximum observed values to be quoted 
below. 

3. Theoretical discussion 
For obvious reasons of symmetry, only those axisymmetric fluid oscillations 

which involve no motions across the equatorial plane of the sphere could be 
excited in the present experiment. Even with this restriction, however, the 
number of eligible inviscid and supposedly infinitesimal eigen-modes was known 
to be denumerably infinite. The eigen-frequencies of such modes were predicted 
by Stewartson & Roberts (1963, equation (5.10)) to be 

where x,, is the mth of the n zeroes of the first associated Legendre function 
Pi,,, (2) in the range 0 < x < 1, here labelled in ascending order. 

The velocity components of the (n, m)th of these modes in the natural cylin- 
drical polar co-ordinates T ,  q5, z may be written 

where 1 W n m  1 allm,. U ( R , Z )  = --, W ( R , Z )  = R az R i3R ’ (4) 
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Here also R = r /a  and Z = zla for brevity, and the complex constant An, is a 
dimensionless amplitude. This product representation of the inviscid eigen- 
modes complements Greenspan's (1964) Legendre function expression (3.45) 
for the spatial part of the disturbance pressure. 

Pl (1,1) Mode 

FIGURE 1. Identification chart. Drawn to scale are the loci where 
critical latitudes are also marked. The rotation axis is vertical. 

= 0; the 

Because of the k = m factor in equation (5), the stream function $nm quite 
properly vanishes on the sphere R 2 + Z 2  = 1. In addition, that equation pre- 
scribes exactly (n- 1) other elliptical cell boundaries along which $,, = 0 in 
any meridional plane. It is easily seen that the semi-major and minor axes of 
those ellipses are always greater and smaller than a, respectively. (A less obvious 
property of those ellipses is that they are all tangent to the rhombus 

Figure 1 displays the nodal surfaces of the first four families of eigen-modes thus 
deduced from equation (5). 

The excitation, decay and superposition of the viscous counterparts to these 
modes in our experiment constitutes a more difficult theoretical problem. In a 
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strict sense that problem has not yet been solved even in the combined limit of 
infinitesimal amplitude and of vanishing viscosity. However, probably the best 
approximation to such a comprehensive theory is that of Greenspan (1964), 
especially $6; see also $52.13 and 2.14 of Greenspan (1968). It appears to leave 
unsettled only the non-uniformities arising from the fact that, no matter how 
small the viscosity, there are (i) neighbourhoods of certain critical latitudes, and 
(ii) modes of sufficiently high order n which require a fuller analysis. 

Our remaining theoretical remarks do not even presume to resolve those 
possibly academic difficulties. They are meant instead to supplement Green- 
span’s own accounts with certain more explicit formulae and with some needed 
physical interpretation. 

This discussion simply postulates that, just as in the wave tank example, all 
direct effects of a slight kinematic viscosity v on at least the low-order modes 
should be confined to thin boundary layers. We then ask: (i) What would be the 
mean rate of energy dissipation in those boundary layers (averaged over one 
complete cycle), if the fluid motion deep in the interior consisted of only one of 
the modes described by equations (3)-(5), and if the sphere itself oscillated either 
in accordance with equation (1) or else not at all? (ii) In  the same circumstances, 
at what average rate would energy be transmitted to the fluid from its container 
via the viscous surface stresses combined with the unsteady rotation? The first 
question is plainly related to the rate of free decay of the particular mode; both 
are involved in the balance between the mean energy input and dissipation which 
must by definition be struck during steady resonance. 

In principle, these two questions are readily answered to leading order in both 
the Ekman number, 

and the Rossby number or the angular half-amplitude, 8, by forming appropriate 
averages over the oscillatory Ekman layer, first with regard to depth and time 
at any given locality, and then over the entire spherical boundary. The actual 
computation is cumbersome. But if we write M = Re@,,) and N = Im(A,) 
for short, the time-averaged dissipation over the entire boundary layer works 
out eventually as 

(7) 

(6) E = v/wa2, 

D,, = P E ~ W ~ ~ ~ ~ ( W ~ , V ) ~ [ K ~ I ~ +  Z K I ~ M + I ~ ( M ~  + N 2 ) ] ,  

where K = 1 if the sphere itself oscillates, and K = 0 if it does not, p is the fluid 

for q = 0, 1 and 2. Here 8 denotes the co-latitude on the sphere and the function 
U is that defined in (4). Likewise, the mean rate of input P of mechanical energy, 
defined as the time-averaged surface integral of the product of the $-component 
of the shear stress at  the interface and the excess motion m a w  sin 8 cos wt of the 
container, may be determined as 
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where I ,  denotes an integral that differs from the above I ,  only by the radicals 
I cos 8 & x,, I*  having been replaced by 2 sgn (cos 8 rt x,,) 1 cos 0 5 xnm I*, respec- 
tively. Numerical values of the integrals I,, 11, and I ,  for all ten modes of figure 1 
are reported in table 1. Also recorded there for later reference are values of another 
integral I%, which is related to I ,  in exactly the same way as Ils is related to I , .  

From the necessity that D,, = P during the steady forced oscillation of the 
fluid (supposedly in a single n, m mode at or near the resonant frequency unm), 
it  follows at  once that 

(21,M+I,)2+(212N+11s)2 = It++fs. (10) 

Thus the two components M ,  N of the energetically possible steady-state response 
amplitude of the fluid must lie on a circle in the complex amplitude plane. This 
circle passes through the origin M = N = 0, and its diameter, and hence also 
the maximum admissible I A,, I, is independent of the viscosity. 

Energy considerations lead also to the following simple estimate of the time 
t ,  required for the e-fold free decay of the amplitude of the (n, m)th mode due 
to a slight viscosity. We note that the corresponding inviscid mode has at  any 
instant the kinetic energy 

R . E .  = g p ~ ; , a 5 ( ~ 2 + ~ 2 ) 1 , ,  (11) 

where 

Hence in the absence of excitation, or when K = 0, 

t,, = 2K.E./Dbl = E-*(I,/I,)W& (13) 

where the Ekman number E now refers specifically to w = u,,. Some values of 
the integral I ,  are also recorded in table 1. 

As we said earlier, these results are noteworthy not for their rigor but merely 
the ease with which they reproduce, and hence elucidate, parts of Greenspan's 
analyses. For instance, despite differences of notation (which, together with 
Greenspan's use of disturbance pressure rather than a stream function, make 
detailed comparisons too lengthy to describe here), the reciprocal of our t,, can 
be shown to be entirely equivalent to the real part of the dimensionless damping 
rate 8,kl described in Greenspan (1964, equation (4.14)). Thus the explicit 
integral in his equation must likewise refer to dissipation, and Nnk there is in 
essence the energy content of the mode. 

Our response circle of (10) is also borne out by Greenspan's study of the forced 
oscillations of the fluid. That expected amplitude, derived in principle already in 
$ 6  of Greenspan (1964), is more conveniently given in equation (2.14.8) of 
Greenspan (1968). If we assume, for simplicity, that I (@/a) - 2xnm 1 < 1, and 
ignore all terms of that order, that equation states in effect that 

(14) 
I ,  + i l l ,  M + i N  - 

I ,  + iI2, + iE-*Ie (0 - W,,)/wnm' 

From this, (10) follows immediately. 
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On the other hand, several aspects of the fluid behaviour clearly cannot be 
deduced from energy considerations alone. One of these is the indication in (14) 
that the greatest modal response occurs at  a value of the excitation frequency w 
which exceeds the inviscid w,, by the amount 

(15) 

or by a fraction Q( - Izs / Iz)  of the frequency interval between the expected half- 
power (or & 45" phase) points of the response peak. This shift of the resonant 
frequency due to viscosity is also implied by the imaginary part of Greenspan's 
(1964) snkl. (Either version can be interpreted as reflecting the Iatitude depend- 
ence of the 0 ( E t )  displacement thickness of the Ekman layer. Because of this, 
the essentially inviscid interior fluid oscillates in what appears to be a slightly 

(8w)nrn = E'( - I Z s I I e )  wnm, 

t T 
0.05 

0.0 
0 5  0.707 1 .o 1.307 

Frequency ratio, Q/o 

FIGURE 2. Theoretical velocity response amplitudes in the limit v + 0. 

dented container.) Energy arguments alone would also not have revealed the 
detailed w dependence of M +iN shown in equation (14), nor would they have 
provided the assurance that various modal wsponses can be superposed linearly. 
Admittedly, those last two facts could have been surmised by analogy with a 
mechanical system of masses and linear springs driven through a viscous dashpot. 
But such an expedient no longer seems called for. 

The maximum theoretical pressure difference amplitudes I Ap I between the 
pole and the centre (x = 0) of the sphere and between the pole and the point 
z = $a on the axis are summarized in table 1. They are there recorded in terms 
of the dimensionless pressure coefficients 

which will also shortly serve to describe the data. To convey a rough idea of the 
phase of the fluid oscillation near any given resonance, a + sign in front of an 
entry means that the greatest overpressure at  the interior point occurs at  
approximately that instant when the sphere itself spins most rapidly. A - sign 
denotes the opposite. In  addition, the arrowheads in figure 1 have all been drawn 
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to correspond to the expected resonant motions at  an instant when the container 
experiences its greatest angular deceleration. 

An almost alarming view of the theoretical complexity of the fluid response in 
the u-+ 0 limit where all resonances become arbitrarily narrow is provided by 
figure 2. Shown there as multiples of ewa are the expected (vertically and time 
averaged) root-mean-square speeds u, along the r = 0 axis for various members 
of the (n,l), (n,2), . . ., (n,8) series of modes. Among other things, such a diagram 
cautions that the decline of the resonant velocity amplitudes with increasing 
modal complexity is not especially rapid. Also, it reveals at a glance something 
about the distribution of the zeroes of the Legendre functions. Although eventu- 
ally dense everywhere, the reciprocal eigen-frequencies Q/w, through any finite 
m show pronounced gaps, notably near [2sin (7r/N)]-l, where N = 4, 6, 8,.  . .. 
But it is perhaps reassuring that the Ekman number would have had to be some 
five orders of magnitude smaller than in our experiment, and the linear dimen- 
sions of any plausible apparatus maybe 100 times greater, to resolve all the 
detail shown in figure 2! 

4. Experimental results 
The observed response spectrum in figure 3 is almost self-explanatory. It 

consists of the pressure coefficients C, (cf. (16)) measured between the centre 
and the pole of the sphere for various frequency ratios Q/w, whilst that container 
oscillated steadily with a half-amplitude E = 8.0'. To be exact, each data point 
represents the mean of about ten crest-to-trough amplitude measurements made 
with calipers from the chart recording of any given run. This averaging circum- 
vented the observed fluctuation of the order of 5% in the successive wave heights 
(much of which, we suspect, was due to electrical noise in the transducer setup 
at these low pressures of operation). As remarked already in $2, it was the turn- 
table speed SZ and not the oscillation rate w that was altered from one run to the 
next. Thus the abscissa Q/w = 0.5, below which practically no fluid response was 
detected, is more easily recognized as the theoretical high-frequency limit 
w = 2R for inertial oscillations. On the other hand, the right-hand extreme, 
R = 20, coincides merely with the approximate top speed of our turntable. The 
solid theoretical curve will for the moment remain unexplained. 

Phase data to accompany figure 3 is reported in figure 4. The phase a = 0' has 
there been defined to mean that the excess pressure at  the centre of the sphere 
attained a maximum exactly when the container itself was rotating fastest. A 
lag angle 01 = 90' means that the central pressure maximum occurred one 
quarter-cycle after the peak container speed, and so forth. The phase was 
actually determined by superposing a transparent reference sinusoid on the 
chart-recorded wave-form and sliding it in the time-like direction until the best 
overall fit had been found by eye. Only in the case indicated by the filled circle 
at Q/w = 1-53 did an overtone, presumably the ( 1 , l )  mode, distort the response 
wave-form enough to yield a secondary maximum or minimum. Any systematic 
(as opposed to random) errors in figures 3 and 4 are almost certainly less than the 
diameters of the data points. 
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The sharpest resonance peak in figure 3 would also have been the tallest had 
the pressure coefficient C, been based on LIZ instead of I$. Not surprisingly, this 
peak and the rapid 180’ phase change in figure 4 virtually coincides with the 
abscissa Q/w = (2xll)-l 2 0-764 predicted for the fundamental (1,l) mode. 
Moreover, each of the other three pronounced peaks falls easily within 1 yo of the 

0 2  L 
I I I I 

Frequcncy ratio, !2/w 

FIGURE 3. Pressure amplitudcs at  the centre of the sphere, for E = 8.0’. 

numerical values 1.066, 1.377 and 1.691 (corresponding to (2zml)-l, n = 2, 3 and 
4). This strongly suggests that all four resonances involve successive members of 
the (n,l) series of modes.? 

That mode identification may be completed by comparing the heights of these 
observed peaks with the theoretical, v-f 0 resonant pressure amplitudes listed 
in table 1. Alternatively, one might refer to either figure 6 of Bretherton, Carrier 
& Longuet-Higgins (1966) or figure 2.8 of Greenspan (1968). Both those figures 
contain exactly the same data as the present figure 3, but they show the expected 
v-t 0 values of (C,),,, for the (n,l>, (n,3) and (n,2) series (in order of decreasing 
magnitude) by means of vertical bars erected at the appropriate frequencies. 
Now it is true that the agreement between the observed and theoretical ampli- 
tudes leaves something to be desired. But clearly the pressure coefficients of no 
other modes even approach those of the (n, 1) series. 

It should perhaps be emphasized again, however, that this predominance of 

t Greenspan’s prediction of the frequency shift (SW)~~ /W, ,  due to viscosity here 
amounts to only 1.5 x even for the (1,l) mode. This is too small to be evident in 
either figure 3 or 4, and remains masked even on an expanded scale by finite amplitude 
effects and the slight non-sphericity of the container. 
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the (n,l) coefficients does not merely stem from the decrease of the predicted 
velocity amplitudes of the other modes with increasing complexity (e.g. recall 
the ‘forest ’ in figure 2, and compare that with the sparser tall ‘trees ’ in the afore- 
cited figures). Mainly, it reflects just the fact that our measurement of the centre- 
to-pole pressure differences discriminates against modes having more than one 
layer of cells in the vertical direction, and especially against those for which that 
number is even. 

0.5 0.764 1,066 I377  1.691 2.0 

Frequency ratio, Qjw 

FIGURE 4. Phase of the pressure oscillations at  the centre of the sphere, for e = 8.0’. 

t C,, sin a 

FIGURE 5. A polar plot of some of the data from figures 3 and 4. 
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The amplitude and phase data of figures 3 and 4 for 0.5 < sZ/w < 1.2 has been 
combined in the polar diagram of figure 5. Note that even the predicted phase 
lead tan-l(Ils/Il) g 6.9’ for the (1 , l )  mode at  its maximum is at least hinted in 
this display of the data. 

The solid curves in figures 3, 4 and 5 represent linear superpositions of all 
theoretical (n,l) modal responses through n = 8 (plus one-half of mode (9 , l ) ) .  
Each of those individual responses was taken to be broadened according to 
equation (14) by the small but finite viscosity, or the Ekman number 

E g 1 . 5 ~  10-5, 

actually involved in the experiment. Strictly, of course, every conceivable 
mode should have been included in this vector superposition. We chose to limit 
ourselves to the (n, 1) series only because of its preponderant amplitudes, the 
expectation that much of the other response would have been self-cancelling, 
and the inconvenience of doing anything else. 

It is noteworthy that this limited superposition reproduces not only the 
approximate widths of the observed peaks and the general progression of phases 
between them, but even explains the rise in figure 3 of the ‘valley’ levels with 
increasing Q/w. On the other hand, the deficiencies in the observed peak ampli- 
tudes still remain, and require the following additional discussion. 

At &st, we were tempted to attribute those discrepancies almost wholly to 
the finite Rossby number of our experiment. Any second-order viscous effects, 
being only O(E4) times those invoked above, seemed too small to matter. To 
check on this, the amplitude measurements near the (1 , l )  resonance peak were 
carefully repeated at several different excitation half-amplitudes E ,  and the 
maximum experimental C, for each E was deduced from a best fit parabola 
through the observed pressure amplitudes at  approximately ten distinct fre- 
quencies. Those results are plotted in figure 6, the vertical bars denoting probable 
errors due to all causes. 

Figure 6 clearly reveals a significant Rossby number dependence of these 
maximum (2,’s. (In part, that decrease with increasing E must be due to boundary 
layer instabilities such as were in fact observed in a progressively wider band of 
low latitudes for E 2 5 O . )  However, this figure also shows that finite amplitude 
effects alone cannot fully account for the aforesaid discrepancy. Even the 
s+0 extrapolation for the maximum C, falls short of the theoretical 0.174 by 
approximately 4%. 

This difficulty was eventually resolved by an explicit computation of the time- 
averaged rate of viscous dissipation, 

Dz, = , u E ~ w & ~ ~ ( M ~  + N2) Id ,  (17) 
throughout the ‘interior’ of the fluid, i.e. excluding only the boundary layer 
For that purpose, the entire fluid was presumed to oscillate in a pure (n,m) mode 
described by equations (3) to (5). Values of I ,  so obtained may be seen in table 1. 

Compared to the dissipation .& in the boundary layer itself, with K = 0 in 
equation ( 7 )  for simplicity, this interior dissipation is indeed formally of 0 (E t ) .  
But, more exactly, 

Dint/Dbl = B’(1d/12). (18) 
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We find from table 1 that the numerical factor Id/Iz 14 already for the (1,l) 
mode, and increases rapidly with increasing modal complexity. The above is, of 
course, not the only second-order viscous effect (the others are boundary layer 
corrections too awkward to estimate here). But it does make an internal viscosity 
correction of the order of 5% for the (1,l) mode seem quite reasonable. In fact, 
if that correction is taken to equal the 4% deficit at  E = O+ extrapolated in 
figure 6, then the other Id/12 discrepancies suggest proportionate reductions of 
about 9, 16 and 25% for the (2,1), (3,l) and (4, l )  response peaks, respectively. 
Roughly such a trend is indeed evident in figure 3, where the finite amplitude 
E = 8' presumably accounts for the rest of the discrepancy. 

50 10" 

Half-amplitude, E 
150 

FIGURE 6. Dependence on E of the heights of the (1 , l )  resonance peak, measured at  the 
centre of the sphere. Shown here are the observed maximum pressure coefficients expressed 
as multiples of the theoretical (C,),,, N 0.174. 

Until now, our discussion of the experimental results has dwelt on centre-to- 
pole pressure differences. As implied before, such measurements were almost 
'blind' to the (n,2) mode series, for instance, owing to the expected near cancel- 
lation there of the net disturbance pressures across the two vertical cells. To 
detect modes of that type, we undertook some additional measurements with 
the probe tip immersed only half-way from the pole to the sphere centre. The 
amplitudes so obtained are shown in figure 7, together with e+O and v+O 
theoretical amplitudes shown by bars similar to those in our older version of 
figure 3. 

Quite evident in figure 7 are new response peaks corresponding to the (2,2) 
and (4,2) modes. The (3,2) mode is less apparent due to its blending with the 
(1,l) mode; however, even on this scale, it can be detected from the broadening 
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FIUURE 7. Pressure amplitudes at the half-way point T = 0, z = &a, for E = 8.0'. 
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FIGURE 8. Fine structure of the ( I l l )  + (3,2) resonance peak, for the same 

conditions as figure 7. 
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of the first major peak as compared with figure 3. That superposition of the (1,l) 
and (3,2) modes is displayed in more detail in figure 8. Were the theoretical peak 
amplitude of the ( 1 , l )  mode reduced by about lo%, and that of the (3,2) mode 
by 30 or 35 (conforming with the preceding Rossby number and internal dissipa- 
tion discussions), the solid theoretical curves in both parts of this diagram would 
indeed come into excellent agreement with the data. If nothing else, this again 
corroborates the view that individual modal responses can be superposed linearly. 

Also recorded with our apparatus was the decay of the fluid vibrations (or, 
more precisely, of the centre-to-pole disturbance pressure differences) following 
a sudden stoppage of the oscillation, but not of the mean rotation, of the con- 
tainer. Prior to each run, the turntable speed Q was fixed at  a value correspond- 
ing to either the (l , l) ,  (2 , l )  or (3 , l )  resonance peak, and the sphere itself was 
shaken long enough with half-amplitude 8 = 8.0" to establish what amounted to 
a steady state. Naturally, the successive peak-to-peak wave amplitudes recorded 
during any single decay declined roughly like exp ( - t/Tn,), with the time Tnm 
depending on the mode. Those observed mean damping times are reported in 
dimensionless form in table 2. Also given there are their theoretical counterparts 
le/12 from (13) and table 1. 

Mode 

n. E ~ T , ,  I e P z  
1 1 0.31, 0.338 
2 1 0.20 0.209 
3 1 0.13 0.152 

TABLE 2. Observed and theoretical damping times. 

It is hardly surprising that the actual decays proved more rapid than those 
predicted theoretically. We have already remarked on the not quite negligible 
internal dissipation. Some additional energy loss a t  the higher amplitudes must 
also have resulted from mild roll instabilities of the oscillatory boundary layer, 
as observed near the equator especially during free decay. 

Quite unexpectedly, however, nearly every decay record was also found to be 
complicated by a quasi-periodic amplitude modulation. Depending on the 
resonance, this modulation amounted to some 10-30% of the instantaneous 
amplitude and involved periods of about 3-5 oscillation cycles. From some 
analogous multiple-mass-and-spring systems subsequently studied numerically, 
we conclude that this beating was probably due to the combined action of several 
viscous modes with frequencies x,, not too far from the primary. To slight 
extent, all those modes must have responded at  the driving frequency to the 
steady oscillation of the container. They apparently reverted to their own 
natural frequencies, and hence drifted out of synchronism whilst decaying, only 
when the forcing was halted. 

about 
1.0 here implied by the mean decay rate of the (1 , l )  mode, and defined as usual 
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Even with that complication, though, the 'quality factor' Q = 40.3 
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as the reciprocal of the fractional energy loss per radian period, agrees tolerably 
well with Q g 42.5 deduced from the amplitude half-width and with Q g 44 
given by the 

A complementary experiment, in which the sphere suddenly began to oscillate 
after a previously uneventful rotation, offered nothing new except at rather large 
amplitudes, at  which an interesting overshooting was observed. That behaviour 
for e = 20" is illustrated in figure 9 by the pressure time histories recorded for 

45" relative phase points. 

FIGURE 9. Some histories of the centre-to-pole pressure differences. The sphere 
started to oscillate at  t = 0. 

several Szjw in the vicinity of the ( 1 , l )  resonance. The greatest transient ampli- 
tudes shown there fall only slightly below the extrapolation to 20" of the straight 
line in figure 6. The slow adjustment in figure 9 towards the eventual response 
amplitudes in figure 9 seems to reflect the observed gradual establishment of a 
retrograde zonal flow. The middle records become curiously irregular after that 
adjustment; for this, we will not even attempt an explanation. 

Finally, in a related series of experiments, a concentric sphere (of outer radius 
equal to either 2.5, 3.5 or 5.0 cm) was fastened from beneath to an axial post 
within our basic spherical container. For the fluid in such spherical shells, spectra 
analogous to those of figures 3 and 7 were obtained, and are reported elsewhere 
(Aldridge 1967). The resonant frequencies, so observed for counterparts of the 
(1, l),  (2 , l )  and several other modes, seem in good agreement with those calculated 
from a certain variational principle. 
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